OPTIMALISASI DISTRIBUSI DAN TINGKAT ENERGI BAHAN PELEDAK DENGAN SISTEM DIFFERENTIAL ENERGY TM (DELTA E)

Stefanus Jagad Gineung Jagad Gineung Pratidina, Desy Rachmawati, Latif Muhammad Badra, Nur Fajar, Muhammad Faqih, Fahri Lundeto

Abstract


ABSTRAK

 

Kondisi geologi yang heterogen menjadi salah satu tantangan pada operasional penggalian dan pengangkutan dalam proses penambangan. Peledakan konvensional sejak lama dilakukan untuk membantu proses pemberaian batuan, namun paradigma yang sampai sekarang masih umum digunakan yaitu bagaimana memakai energi sebesar-besarnya untuk menghancurkan batuan. Hal ini menjadi kurang efisien karena tidak memperhatikan variasi litologi batuan dan masih berpotensi menimbulkan berbagai macam isu, seperti fragmentasi yang buruk, recovery penggalian rendah, serta biaya peledakan yang tinggi. Pemanfaatan bahan peledak dengan tingkat workable energy yang tepat (Berta, 1985) serta distribusinya di dalam lubang berdasarkan jenis litologi dibutuhkan untuk mewujudkan peledakan yang optimal. Teknologi Differential EnergyTM yang mengombinasikan automatic gassing system pada truk MPU (mobile processing unit) dengan high viscosity emulsion product dapat memberikan fleksibilitas dalam pengaturan densitas bahan peledak tanpa mengurangi ketahanan terhadap air. Hal ini memungkinkan pengisian emulsi curah dengan berbagai tingkat energi di dalam satu lubang ledak yang sama secara cepat dan akurat. Selain itu, persentase workable energy yang dihasilkan lebih besar dibanding ANFO maupun bahan peledak emulsi biasa.  Makalah ini membahas mengenai tahap 1 penerapan Differential EnergyTM dalam operasional peledakan, dimana fokus utamanya yaitu mencapai nilai densitas tunggal yang masih dapat menghasilkan kualitas maksimal. Pengambilan data dilakukan di tambang batubara PT Berau Coal jobsite Buma - Lati yang berada di Kabupaten Berau, Kalimantan Timur dari bulan Agustus 2018 hingga Juli 2019. Hasil yang diperoleh dari studi menunjukkan Differential EnergyTM mampu mencapai densitas 0.7 g/cc dan memberikan peningkatan dari sisi kualitas fragmentasi peledakan, produktivitas unit digger, nilai recovery, serta pengurangan biaya peledakan akibat penurunan nilai powder factor, penurunan konten AN, dan penerapan expanded pattern. Sistem Differential EnergyTM tetap membutuhkan analisis geologi yang komprehensif serta kontrol operasional yang baik. Apabila litologi batuan sudah diketahui maka penempatan bahan peledak dengan tingkat workable energy yang tepat bisa dilakukan, sehingga penggunaan energi bahan peledak bisa lebih efisien dan optimal.

 

Kata kunci: workable energy, distribusi energi, peledakan, Differential EnergyTM

 

 

ABSTRACT

 

Heterogeneous geological conditions have become one of the challenges for the operational of excavation and transportation in the mining process. Conventional blasting has long been done to help the process of rock dispersion, but the paradigm that is still commonly used today is how to use maximum energy to destroy rocks. This becomes less efficient because it does not pay attention to variations in rock lithology and still has the potential to cause a variety of issues, such as poor fragmentation, low excavation recovery, and high blasting costs. The use of explosives with the right level of workable energy (Berta, 1985) and their distribution in holes based on the type of lithology are needed to create optimal blasting. Differential EnergyTM technology that combines automatic gassing systems in MPU (mobile processing unit) trucks with high viscosity emulsion products can provide flexibility in adjusting the density of explosive without reducing its water resistance. This allows the charging of bulk emulsions with various energy levels for the same explosive hole quickly and accurately. In addition, the percentage of workable energy produced is greater than ANFO or ordinary emulsion explosives. This paper discusses phase 1 of the application of Differential EnergyTM in blasting operations, where the main focus is to achieve a single density value that can still produce maximum quality. Data was collected at PT Berau Coal, Buma - Lati jobsite in Berau District, East Kalimantan from August 2018 to July 2019. The results obtained from the study show that Differential EnergyTM is able to reach a density of 0.7 g/cc and provide an improvement in blasting fragmentation quality, digger unit productivity, blasting recovery value, and reduction in blasting costs due to a decrease in powder factor, decreased AN content, and expanded pattern application. The Differential EnergyTM system still requires comprehensive geological analysis and good operational control. If rock lithologies have been detailed then the placement of explosives with the right level of workable energy can be done, so that the use of explosive energy can be more efficient and optimal.

 

Keywords: workable energy, energy distribution, blasting, Differential EnergyTM



Full Text:

PDF

References


Allum, J. 2002. A Study of The Behaviour of Emulsion Explosives. Cranfield University, Cranfield.

Barnhart, C. R. 2003. Understanding the “orange smoke” problem in cast blasting. Proceedings of the Twenty-Ninth Annual Conference on Explosives and Blasting Technique, pp 307-318 (International Society of Explosives Engineers: Cleveland, Ohio).

Berta, G. 1985. Explosive: An Engineering Tool. Milano: Italesplosivi int. editions. P 184-185.

Bozic, B. & Braun, K. 1991. Tectonic Fabric and Blasting in Dolomite Rocks. 7th International Congress on Rock Mechanics: Aachen.

Gama, C. D. 1997. Computer Model for Block Size Analysis of Jointed Rock Masses. Proc. 15th APCOM Symposium AIMM, 305-315: Brisbane.

Sapko, M, Rowland, J, Mainiero, R and Zlochower, I. 2002. Chemical and physical factors that influence NOx production during blasting-exploratory study. Proceedings of the Twenty-Eighth Annual Conference on Explosives and Blasting Technique, pp 317-330 (International Society of Explosives Engineers: Cleveland, Ohio).


Article Metrics

Abstract view : 556 times
PDF - 849 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.