A REVIEW ON QUANTIFICATION OF ROCK MASS DAMAGE AS CRITICAL CONSIDERATION IN STABILITY ANALYSIS

Sari Melati, Ridho K. Wattimena, David P. Sahara, Ganda M. Simangunsong, Wahyu Hidayat

Abstract


Jumlah penggalian struktur berukuran besar semakin meningkat, untuk proyek penambangan, bendungan, jalan, dan proyek lainnya. Kerusakan massa batuan sekitar akibat penggalian harus dikuantifikasi dan dipertimbangkan dalam analisis kestabilan struktur. Penelaahan dilakukan terhadap sejumlah referensi primer yang membahas mengenai atau berkaitan dengan kuantifikasi kerusakan massa batuan. Hasil telaahan berupa rangkuman definisi dan faktor penyebab, parameter, serta metode kuantifikasi kerusakan massa batuan. Kerusakan mengacu pada penurunan kualitas akibat pertambahan kekar atau berkurangnya kekuatan massa batuan. Kerusakan ini terjadi dalam daerah pengaruh tertentu dan mengubah sifat mekanik massa batuan. Tingkat kerusakan dinyatakan sebagai perbandingan penurunan paramater kualitas massa batuan setelah penggalian dengan kondisi awal. Kuantifikasi telah dilakukan terhadap lereng dan terowongan tambang maupun proyek lain menggunakan berbagai metode: solusi matematis, monitoring, pengujian di laboratorium, studi numerik, dan atau metode gabungan. Akurasi kuantifikasi tingkat kerusakan massa batuan di sekitar penggalian sangat bergantung pada ketepatan dalam menentukan perubahan propertis kualitas massa batuan aktual. Oleh karena itu diperlukan metode pemantauan yang mampu mencakup area massa batuan terganggu sehingga kondisi kerusakan dapat teridentifikasi dengan tepat.

Keywords


kerusakan, kestabilan, kuantifikasi, massa batuan

Full Text:

PDF

References


Agliardi, F., Crosta, G. B., Meloni, F., Valle, C., Rivolta, C. (2013): Structurally-controlled instability, damage and slope failure in a porphyry rock mass, Tectonophysics, 605, 34–47.

Cai, M., Kaiser, P.K., Martin, C.D. (2001): Quantification of rock mass damage in underground excavations from microseismic event monitoring, International Journal of Rock Mechanics & Mining Sciences, 38, 1135 – 1145

Cao, W., Durucan, S., Cai, W., Shi, J.Q., Korre, A., Jamnikar, S., Rošer, J., Lurka, A. Siata, R., (2020): The role of mining intensity and pre-existing fracture attributes on spatial, temporal and magnitude characteristics of microseismicity in longwall coal mining. Rock Mechanics and Rock Engineering, 53(9), pp.4139-4162

Flores, G., Catalan, A. (2019): A transition from a large open pit into a novel “macroblock variant” block caving geometry at Chuquicamata mine, Codelco Chile. Journal of Rock Mechanics and Geotechnical Engineering, 11(3), 549-561

Gao, W., Chen, X., Hu, C., Zhou, C., Cui, S. (2020): New damage evolution model of rock material, Applied Mathematical Modelling, 86, 207-224.

Ghosh, G. K., Sivakumar, C. (2018): Application of underground microseismic monitoring for ground failure and secure longwall coal mining operation: a case study in an Indian mine. Journal of Applied Geophysics, 150, 21-39.

Gonzalez, Y. T., Schaefer, V., Rollins, D. K. (2022): Applications of Statistical Design of Experiments to Study the Factor of Safety of Unreinforced Slopes. In Proceedings of the technical sessions of the international foundations congress & equipment expo ASCE, Dallas, Texas, May 10-14, 2021.

Goodale, E. I. T. J., & Fisher, B. (2021): Global stability assessment of open pit slopes using LEM and FEM: A comparison between the factor of safety and strength reduction factor. In The Evolution of Geotech-25 Years of Innovation (pp. 436-442). CRC Press.

Ghaychi Afrouz, S., & Westman, E. C. (2018): Review and simulation of passive seismic tomography in block cave mining. In Fourth International Symposium on Block and Sublevel Caving. Australian Centre for Geomechanics, Perth.

Hidayat, W., Sahara, D. P., Widiyantoro, S., Suharsono, S., Wattimena, R. K., Melati, S., Putra, I.P.R.A., Prahastudhi, S., Sitorus, E., Riyanto, E. (2022): Testing the Utilization of a Seismic Network Outside the Main Mining Facility Area for Expanding the Microseismic Monitoring Coverage in a Deep Block Caving. Applied Sciences, 12(14), 7265.

Jeon, B., Jeong, H., Choi, S., & Jeon, S. (2022): Assessment of Subsidence Hazard in Abandoned Mine Area Using Strength Reduction Method. KSCE Journal of Civil Engineering, 1-21.

Jeon, B., Jeong, H., Choi, S., & Jeon, S. (2022): Assessment of Subsidence Hazard in Abandoned Mine Area Using Strength Reduction Method. KSCE Journal of Civil Engineering, 1-21.

Ji, L., Zhou, C., Lu, S. Jiang, N., Li, H. (2021): Modeling study of cumulative damage effects and safety criterion of surrounding rock under multiple full-face blasting of a large cross-section tunnel, International Journal of Rock Mechanics and Mining Sciences, 147, 104882.

Junaid, M., Abdullah, R.A., Sa’ari, R., Rehman, H., Shah, K.S., Ullah, R., Alel, M.N.A., Zainal, Z., Zainuddin, N.E. (2022): Quantification of Rock Mass Condition Based on Fracture Frequency Using Unmanned Aerial Vehicle Survey for Slope Stability Assessment, Journal of the Indian Society of Remote Sensing, 1-14.

Makarov, V.V., Guzev, M.A., Odintsev, V.N., Ksendzenko, L.S. (2016): Periodical zonal character of damage near the openings in highly-stressed rock mass conditions, Journal of Rock Mechanics and Geotechnical Engineering, 8, 164-169.

Ma, C., Li, T., Zhang, H., Jiang, Y. Song, T. (2019): A method for numerical simulation based on microseismic information and the interpretation of hard rock fracture, Journal of Applied Geophysics, 164, 214-224.

Ma, T. H., Tang, C.A., Rang, S. B., Kuang, L., Yu, Q., Kong, D. Q. Zhu, X. (2018): Rockburst mechanism and prediction based on microseismic monitoring, International Journal of Rock Mechanics and Mining Sciences, 110, 177-188.

Pakalnis, R., Brady, T. M., Hughes, P., Caceres, C., Ouchi, A. M., MacLaughlin, M. M. (2007): Weak Rock Mass Design For Underground Mining Operations; Proceedings Of The International Workshop On Rock Mass Classification In Underground Mining.

Read, R.S. (2004): 20 years of excavation response studies at AECL's Underground Research Laboratory, International Journal of Rock Mechanics & Mining Sciences, 41, 1251 – 1275.

Singh, B., Goel, R. K. (2011): Engineering rock mass classification (pp. 1755-1315). Boston: Butterworth-Heinemann

Tang, C., Li, L., Xu, N., Ma, K. (2015): Microseismic monitoring and numerical simulation on the stability of high-steep rock slopes in hydropower engineering, International Journal of Rock Mechanics & Geotechnical Engineering, 7, 493 – 508.

Torbica, S., Lapčević, V. (2015): Estimating extent and properties of blast-damaged zone around underground excavations, Rem: Revista Escola de Minas, 68, 441-453

Vibert, C., Vaskou, P. (2011): Use of rock mass classifications for design: recommendations and suggestions. In 12th ISRM Congress. OnePetro.

Wang, L., Yin, Y., Huang, B. Dai, Z., (2020): Damage evolution and stability analysis of the Jianchuandong Dangerous Rock Mass in the Three Gorges Reservoir Area, Engineering Geology, 265, 105439.

Wu, H., Fang, Q., Guo, Z. (2008): Zonal disintegration phenomenon in rock mass surrounding deep tunnels, Journal of China University of Mining and Technology, 18(2), 187–193.

Wu, F., Liu, J., Liu, T., Zhuang, H., Yan, C. (2009): A method for assessment of excavation damaged zone (EDZ) of a rock mass and its application to a dam foundation case, Engineering Geology, 104(3-4), 254–262.

Zhao, Y., Yang, T., Zhang, P., Zhou, J., Yu, Q., Deng, W. (2017): The analysis of rock damage process based on the microseismic monitoring and numerical simulations, Tunnelling and Underground Space Technology, 69, 1-17.


Article Metrics

Abstract view : 269 times
PDF - 297 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.